Flow anisotropy in rotating buoyancy-driven turbulence
نویسندگان
چکیده
منابع مشابه
Energy spectrum of buoyancy-driven turbulence.
Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Π(u), we demonstrate that, for stably stratified flows, the kinetic energy spectrum E(u)(k)∼k(-11/5), the potential energy spectrum E(θ)(k)∼k(-7/5), and Π(u)(k)∼k(-4/5) are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential ener...
متن کاملShell model for buoyancy-driven turbulence.
In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k(-11/5). The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyan...
متن کاملAnisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence
The effect of a background rotation on the decay of homogeneous turbulence produced by a grid is experimentally investigated. Experiments have been performed in a channel mounted in the large-scale ’Coriolis’ rotating platform, and measurements have been carried out in the planes normal and parallel to the rotation axis using particle image velocimetry. After a short period of about 0.4 tank ro...
متن کاملBuoyancy generated turbulence in stably stratified flow with shear
The energy evolution in buoyancy-generated turbulence subjected to shear depends on the gradient Richardson number Ri and the stratification number St, which is a ratio of the time scale of the initial buoyancy fluctuations to the time scale of the mean stratification. During an initial period, the flow state evolves as in the unsheared case. After this period, shear generates fluctuating veloc...
متن کاملEnergy Spectrum and Flux of Buoyancy-Driven Turbulence
Gravity or buoyancy plays an important role in atmospheric and geophysical flows. The flow is destabilized when heavier or colder fluid is on top of a lighter or hotter fluid, often seen in thermal convection (Fig 1(a)). Convection plays an important role in interiors of many planets and stars, and it is one of the mechanisms for the generation of a magnetic field. Conversely, the flow is stabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Fluids
سال: 2016
ISSN: 2469-990X
DOI: 10.1103/physrevfluids.1.044403